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ABSTRACT

A molecular-thermodynamic framework is proposed to describe phase
equilibria over a wide range of densifies and compositions. The proposed
framework is expressed through a model for the Helmholtz energy that
incorporates arbitrary mixing rules at high densities, while at low densities,
the model reduces to the correct second-virial-coefficient limit. In effect, this

framework provides decnsity-dependent mixing rules.

The proposed framework is illustrated with an equation of state of the
Boublik-Mansoori-van der Waals form. Special attention is given to high-
pressure  vapor-liquid equilibria for systems containing water and

hydrocarbons.



INTRODUCTION

Equations of state are commonly used to correlate thermodynamic
properties for computer-aided design of chemical processes. When extending
equations of state to mixtures for correlation of fluid-phase equilibria, the
most important step is the proper formulation of mixing rules for the
equation-of-state parameters. Whencver possible, these mixing rules should

be consistent with theoretical criteria.

At low densities, an équation of state must not only approach the ideal-
gas limit as the density goes to zero but, in addilioh, it must give a good second
virial coefficent; it must give the correct effect of temperature and, for
mixtures, it must give a second virial coefficient which is a quadratic function

of mole fraction.

At " high densities, thermodynamic properties are conveniently
represented by perturbation theories based on the van der Waals partition
function.  These perturbation theories are given as a power series in inverse
temperature and inverse volume about the high-temperature, high-density
limit. Unfortunately, however, the van der Waals partition function is not
reliable for fluids at low dcns_itics, especially at low temperatures.  Therefore,
as discussed elsewhere (e.g. Rowlinson and Swinton, 1982, Sandler, 1985), the
van der Waals partition function is not able to correlate fluid-phase behavior

for the entire temperature-density space.

We seek a simple, continuous description of fluid properties for
densities  that range from the idecal-gas limit to liquid-like densities. We have

therefore decveloped a semi-theoretical, molecular-thermodynamic framework



for representing the Helmholtz energy of a mixture over a wide density range
similar to that described previously (Dimitrelis and Prausnitz, 1982; Prausnitz,
1983, 1985). The framework consists of two parts, one for the low-density and
one for the high-density region. For continuity, the framework includes an
interpolation function which interpolates between the two density regions.
The significant advantage of our framework is that it can incorporate
unconventional high-density mixing rules (which are necessary to correlate
complex high-pressure fluid-phase’ bchavior) within a molecular-
thermodynamic model which also obeys well-established low-density

boundary conditions.

Fo]lowi‘ng a suggestion by Kohlcr> and Haar (1981), and following the

procedure discus'scd by Larsen and Prausnitz (1984), we express the molar

1 4
residual Helmholtz cnergy @ as the weighted sum of a low-density second-

virial-coefficient term and a high-density van der Waals term. Weighting is
achieved through a phenomenological interpolation function of reduced
density and temperature that interpolates between the low-density limit and
the high-density limit. Mixing rules for the low-density term follow from
well-established theory. Mixing rules for the high-density term are
determined empirically as indicated e.g. by Wilson (1972), Huron and Vidal

(1978) and Peng and Robinson (1980).

Our framework can be applied to any equation of state of the van der
Waals form. We present here examples using a Boublik-Mansoori/van der
Waals equation of state.  (Similar calculations using the perturbed-hard-chain
equation of statc were presented by Cotterman er al. (1986)). Calculated binary
phase equilibria for several highly asymmetric mixtures are used to

demonstrate the flexibility as well as the limitations of our framework. -



Preliminary versions of these concepts have been presented in an
earlier publication (Liidecke and Prausnitz, 1985). Similar work has been
proposed by numerous other investigators, notably by Mathias and Copeman

(1983), Mollerup (1983), Panagiotopoulos and Reid (1986) and Wogatzki (1988).

RESIDUAL HELMHOLTZ ENERGY

T
We seek an expression for the molar residual Helmholtz energy @ for a

fluid mixture.  The residual Helmholtz energy is defined as the Helmholtz
energy of a real mixture minus that of an ideal-gas mixture at the same
temperature, density and composition. It is most convenient to devcldp a model
for the Helmholiz energy because its derivatives with respéct ‘to density and
éomponcnt mole number yield, respectively, the pressure and the chemical
potential; these 'two properties are required to perform isothermal phase-

equilibrium calculations.

Following van der Waals, we separate t:tr into reference and
perturbation terms:

r ref per

a =a +a (1)
The reference term includes repulsive intermolecular forces: the perturbation
term includes attractive intermolecular forces.  We separate the perturbation
term  into low-density (second-virial) and high-density (dense-fluid)

contributions:

per sv df
a =a (l-f')+a F (2)

Function F interpolates smoothly between the two limits.



The separation shown in Equation (2) allows us to use two independent
molecular-thermodynamic models, one for each of the two ends of the density
range. On the one hand, we can satisfy the temperature and mole-fraction
dependence of the second virial coefficent; on the other, we have the freedom
to use a high-density attractive term with whatever mixing rules may be.
required to correlate highly nonideal fluid-phase behavior at liquid-like

densities.

At constant temperature .and composition, Figure 1 shows the low-
density and high-density perturbation contributions. to the molar residual
Hclmholtz energy as a function of molar density. Interpolation function ¥
interpolates between the two contributions.

ref
For the reference contribution a , we use the Boublik-Mansoori

expression for a hard-sphere mixture (See Appendix I). For the second-virial
sV

terma  we use
sV m m sV
& =-p> Y xixjaj (T) (3)
i=1 j=1
where p is the molar density, xiis the mole fraction of component i, m is the

sV
number of components in the mixture and aj (T)is an empirical expression

for the effect of temperature T on the attractive contribution to the second

sV
virial coefficient. For this work, we use foraj (T)the correlation proposed by -

Tsonopoulos (1974) (See Appendix II).

MOLECULAR-THERMODYNAMIC MODEL AT HIGH DENSITY

of
For the dense-fluid terma ,we use a simple van der Waals expression:



Simple (van der Waals)
Dense-Fluid
Contribution

“Interpolation
Function

Second-Virig!
Contribution

Perturbation Term for the Molor Residual Helmholtz Energy

Molar Density

Figure 1. Pecriurbation Contribution 1o the Molar Residual Helmholiz Energy
According 10 the Proposed Mode! as a Function of Density, a1 Constant
Temperature and Composition.



adf=- adf(T,p,xi)p (4)

The attractive-force parameter adfdepcnds, in general, upon temperature,
density and composition. For the illustrative purposes of this work, we assume
the simplest case where adfdepends on temperature and composition only.
However, the framework we are proposing is not limited to this case; it can also
be used with more complex density-dependent forms for the attractive-force
parameter, e.g., with the perturbation term for the Redlich-Kwong equation or

the perturbed-hard-chain equation (Cotterman et al,, 1986).

&
The mixing rule for a is now arbitrary since it does not affect the

sccond virial coefficient. Any empirically successful rule can be used. For the

mixtures of interest here, we use a mixing rule which is cubic in mole

fraction:
df m m m df .
a (T,xi)=z Z Z Xixjxpaip(T) (5)
i=1 j=1 p=1
where
o &«
aii(T) =a; (T) (6)
au(M =1 (a'(T) + 205 (111 (M)

df 1 df df of of df df
aijp(T)=g {aij [(1-kig) +(1-kji)]l+ajp [(1-kjp) +(1-kpj) ] +

df o daf
+aip [(1-kip) +(1-kpi)]} (8)

and

df vdr—df—
aij=Vai(T)a; (T) - (9)



"This mixing rule allows for two adjustable parameters per binary pair,
o df .
since kji#kij. The algebraic form of the mixing rule is such that the two
binary parameters account for deviations from the geometric-mean
combining rule (Equation (9)) at the two opposite ends of the concentration
d. - -. ‘- - 3
range. Parameter k;j is characteristic of the energetic interactions for a
&
molecule i infinitely dilute in molecules j. Similarly, parameter k;;i depends on
the interactions between a molecule j infinitely dilute in molecules i.

Therefore, the two parameters are independent.

For mixtures of molecules with similar intermolecular potentials (i.e.,

o o d
when kji=kij =kij) Equation (5) reduces to the familiar quadratic form

& m m & o o '

a (Txi) =YY xixjVai(T)aj (T)(1-kij) (5a)

i=1j=1 :

Mixing rules similar to Equation (5) have been proposed by Mathias and
Copcman (1983), Panagiotopoulos and Reid (1986), Stryjek ahd Vera (1986) and
Adachi and Sugie (1986). However, these previous authors have not given as

carcful attention as we have, toward obtaining the correct effect of

composition and temperature on second virial coefficients at low densities.

INTERPOLATION FUNCTION

We determine interpolation function F empirically, subject to necessary
boundary conditions. At zero density, F must be zero; this boundary condition
assures that the interpolation function does not contribute to the second virial

cocfficient. To demonstrate, we write for the perturbation contribution to the

second virial coefficient



per

per 1 /a
B =21 - . (10
T [ 3 Jp=0 )

where R is the gas constant. Using Equation (2), we obtain

sV df sV
per_ 1 /a . 1 da -a ) 0 F(0=0
RT [ P Jo=0+ =T { P lp=0 F(p=0) + .
df sV
+-L (@ (=0)-a <p=0)}[‘%1p=o (1)

If the value for ¥ at zero density is zero, the second term vanishes. Since the
dense-fluid and second-virial contributions to the Helmholtz energy are both
zero at zero density, the third term also vanishes. Therefore, the perturbation
contribution to the second virial coefficient is determined only by the first

term of Equation (11).

At a limiting liquid-like density PL, ¥ must approach unity. For our

purposes here, we define the limit of "liquid-like" density as that density
where reduced density § is equal to the closed-packed density t for a cubic

face-centered lattice, i.e.

—p_ Y2
&P—’PL—‘:‘ 6 (12)
For the reduced density & of a mixture, we use
m
§=§2 xib i _ (13)

=1

where b is the van der Waals covolume.

The derivative of F with respect to density at zero density is related to
the third virial coefficient. It must be non-zero and finite so that the third

virial coefficient may attain physically reasonable values. A zero derivative



implies that the third virial coefficient is dictated by the reference term only;

this is physically unrealistic. ~However, at liquid-like densities, the derivative

of ¥ with respect to density must approach zero because we want the

contribution of the second-virial-coefficient on pressure to diminish at high

densities. Therefore, ¥ must asymptotically approach unity at liquid-like

densities.

Finally, at constant density, ¥ must decrease with rising temperature so
that the molecular-thermodynamic model approaches the random-mixture

limit at high temperature.’

A simple empirical form for F which obeys all necessary boundary

conditions is shown in Figure 2. Its analytical form is given by

r=1-(1-5t_)% | (14)

.

where T, is the reduced temperature and y is a universal constant.  This
constant is obtained from pure-component vapor-pressure and liquid-densily
data for a wvariety of fluids. A value of y=6 gives the best overall
represcntation.  For a mixtu.rc. reduced temperature is defined by

T
m m
S Y xix;VTeiTe

i=] j=

Tr=

(15)

—

where Tciis the critical temperature of component i. For the critical isotherm,
interpolation function ¥ =0.5 at approximately 60% of the critical density, as

indicated in Figure 2.



Interpotation Function

O.5f----
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Figure 2.

Dens:ty

Interpolation Function F.
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The advantage of the molecular-thermodynamic framework proposed
here follows from its flexibility; while it can incorporate any kind of
unconventional high-density mixing rule (e.g., Michel et al, 1989), it
nevertheless always gives the correct low-density second-virial-coefficient

limit, including the quadratic mole-fraction composition dependence.

Finally, to yield good second virial coefficients, we introduce a small
cérrection term to the Helmholtz energy at low densities to account for the
disparity in the value of van der Waals covolume between low and high
density. The estimated value for the van der Waals covolume depends upon the
density range for the data used for its calculation (Prausnitz, 1985). High-
density data givc.a lower value for b than second-virial-coefficient data. The

mathematical form for the correction function is given in Appendix III.

PARAMETER CORRELATION

daf
Pure-component parameters a; and b;depend on temperature

according to the empirical rclations:

o 2 2 (0)
a; = R T aj; (16)
. (N 2
PC,I 1+a| ( T )
cl
(0)
b= RT.,i bi (17)
: i (n 2
IR P
Tei

. . . ©. (1) (0 (1) )
Dimensionless cocfficients a; ,ai ,bi and b; are obtained from vapor-

pressure, liquid-density and supercritical-density data. Table 1 gives

numerical values for the components investigated in this work.

13
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Table 1: Pure-component parameters a; ,a; ,b; andbj
€0) n (0) (1)
Component aj aj i bi Reference
CHy 0.5205 0.08510 0.1884 0.09499 Angus et al.
(1978)
C2Hg 0.6092 0.3761 0.2068 0.3158 Goodwin et al.
(1976)
C3Hg 0.6169 0.3847 0.1985 0.2506 Goodwin and
Haynes (1982)
n-C4H1i0- 0.6249 0.4165 0.1943 0.2413 Haynes and
' Goodwin (1982)
n-CeHig 0.6528 0.5409 0.1867 0.2506 Vargaftik (1975)
n-C1oH22 0.7420 0.8277 0.1840 0.3067 Vargaftik (1975)
CeHg 0.6327 0.4856 0.1942 0.2955 Institute of Gas
- Technology
(1978)
CH30H 0.6810 0.8170  0.1676 0.3505 Radosz (1980)
Machado and
Streett (1983)
C2HsOH 0.8659 1.1345 0.1973 0.4310 Lo and Stiel
(1969)
Ambrose et al.
(1970, 1975)
CH3CHOHCH;3 0.9552 1.4104 0.2033 0.4888 Radosz (1980)
CH3CHOHC2H5 0.9266 1.3243 0.2069 0.4850 Radosz (1980)
CH30CH3 0.6046 0.3675 0.1884 0.2177 Boublik er al.
- (1984)
86, 0.5901 0.3260 0.1811 0.1481 Angus et al.
(1976)
H,O 0.5770 0.5803 0.1644 0.3605 Bain (1964)

df df
Binary dense-fluid parameters kij and kj;

liquid or

liquid-liquid equilibria, or

Henry's

constants.

are obtained from vapor-

For some highly

asymmetric  aqueous hydrocarbon mixtures, the dense-fluid paramecter

describing the dilute aqueous phase is temperature-dependent according to:



df df,(0) kdf’(l)
' i, H,0

k',H =k'.H +_l—

PROTERMOT TN K

(18)

Table 2 gives binary parameters for the mixtures investigated in this work.
Details concerning the numerical procedure for data reduction are given

elsewhere (Topliss er al., 1988).

daf df
Table 2: Binary dense-fluid parameters kij and k j;.

d1,(0) df,(1) df
Mixture (i/j) kij kij kji T.K Reference
CO'Q/HzO 0.32 -145.85 0.091 298-348 Wiebe (1941)
CH30CH3/H20 0.45 -226.22 0.064 373-394 Pozo and
Streett (1985)
C3Hg/H20 : 0.29 -163.38 0.45 310-427 Kobayashi and
. Katz (1953)
n-C4H19/H,20 0.29 -175.41 0.48 377-510 Reamer et al.
(1952)
CeHg/H20 0.18 -91.73 0.26 313-473 Tsonopoulos
and Wilson
‘ (1983)
C2HsOH/H20 -0.095 -0.058 298-343 Mertl (1972)
CH3CHOHCH3/H20 -0.15 _ -0.085 308-338 Sada and
Morishue
(1975)
CH3CHOHCHs/HO  -0.16 -0.087 333-353 Altsybeeva
et al. (1964)
Moriyoshi et al.
(1975)
CO2/CH30H -0.042 -0.0068 298-313 Ohgaki and
Katayama
‘ (1976)
CO/C2H50H 0.051 0.073  308-348 Panagioto-
poulos (1986)
Gupta et al.
(1973)

CO2/CH3CHOHCH3 0.076 0.056 316-394 Radosz (1986)



CH4/CH30H -0.10 0.025 250-310  Hong et al.
(1986)

C3Hg/CH30H -0.040 0.029 313-373 Galivel-
Solastiouk
et al. (1986)

n-CgH14/CH30H -0.022 0.099 280-320  Raal et al.
, (1972)

Holscher et al.
(1986)

C3Hg/CoHsOH -0.017 -0.044 325-475 Gomez-Nieto
' and Thodos
(1978)

n-CeH14/C2HsOH 0.015 0.11 298-328 Yuan er al.
' (1963)

CeHg/CaH5OH 0.034 0.10  298-328  Brown and
Smith (1954)

Smith and
Robinson
(1970)

Yuan et al.
(1963)

ILLUSTRATIVE RESULTS

Figures 3 and 4 show calculated and experimental (Kobayashi and Katz,
1953; Rcamer et al, 1952) phasc equilibria for propane/water and
n-butanc/water at two temperatures. The model correlates the phase behavior
for these highly asymmetric aqueous hydrocarbon mixtures very well over a
wide range of temperature, pressure and concentration (Note the
discontinuity™ in the molc—ffaclion axis for the hydrocarbon). For these
calculations, the dense-fluid binary parameter for the dilute aqueous phase

depends on temperature according to Equation (18).

Since the calculations are near the critical points of the more volatile
component, we¢ adjusted the -equation-of-state parameters for these

components to represent better their pure-component properties in the near-
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critical region. As discussed in Appendix IV, the choice of equation-of-state
parameters has a serious effect on mixture calculations near a component's
critical point. Overprediction of the solvent's critical temperature and
pressure (even by few degrees or few bars) can adversely affect mixture

‘calculations in the solvent's near-critical region.

Figure 5 shows calculated and experimental (Tsonopoulos and Wilson,
1983) liquid-liquid equilibria at the three-phase pressure for benzene/water.
Using a temperature-dependent- binary interaction parameter for the aqueous
phase, the equation of state reproduces correctly mutual solubilities over a

ncarly two-hundrcd-degree (Celsius) temperature range.

Figure 6 shows predicted Henry's constant for benzene in water. The
“binary parametérs used for these calculations were obtained from liquid-
liquid equilibrium data.  Agreement with experiment (Tsonopoulos and Wilson,
1983) is excellent. Figure 6 indicates the flexibility of the proposed molecular-
thecrmodynamic framework to correlate high-pressure phase behavior while

satisfying low-density boundary conditions.

The above examples represent a class of binary mixtures for which the
cubic mixing rule [Equation (5)] is particularly suitable for representing the
obscrved phase bchavior.  The coexisting phases are very dilute; thus, mutual
solubilities are directly related to Henry's constants. Each of the two dense-
fluid binary parameters [Equation (7)] affects directly the respective infinite-
dilution fugacity coefficient. Therefore, these binary parameters can
correlate  successfully thermodynamic properties at both ends of the

concentration range.

19
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Figure 6. Predicted and Experimental Hennv's Constant for Benzene in Water.
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Figure 7 shows calculated and experimental (Pozo and Streett, 1984)
phase equilibria for dimethyl ether/water.  The proposed model correlates the
phase behavior very well over a wide range of densities (Note the
discontinuity in the pressure axis). Further, while no three-phase data were
included in data reduction to obtain the binary parameters, the model predicts

the correct three-phase-equilibrium pressure.

Figure 8 shows calculated and experimental (Altsybeeva et al., 1964,
Moriyoshi et al.,, 1975) phése equilibria for the system 2-butanol/water. Using
two temperature-independent binary parameters, the model represents well
the complex fluid-phase behavior, including the low-pressure azeotrope and
thrce-phase equilibrium as well as the high-pressure liquid-liquid
immiscibility over a large pressure range (Note the discontinuity in the

pressure axis).

Figure 9 shows calculated and experimental (Wiebe, 1941) vapor-liquid
equilibria for carbon dioxide/water. Agreement between experiment and
model is excelient including the retrograde region (Note the discontinuity in

the mole-fraction axis).

While the proposed model is useful for correlating the properties of
several asymmetric mixtures, it suffers from a deficiency common to all van-
der-Waals models: it fails to réprcscm phase equilibria near mixture-critical
points, overestimating or underestimating the observed phase envelope.  This
failure becomes particularly important when the liquid-liquid critical locus. is
in close proximity to the two-phase vapor-liquid region. A> small
underprediction of the liquid-liquid mixture critical pressure yields an

incorrect liquid-liquid immiscibility region when calculating nearby vapor-

.22
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liquid phase equilibria. To illustrate, Appendix V gives results for the

propane/methanol mixture.

EFFECT OF THE SECOND VIRIAL COEFFICIENT ON PHASE-EQUILIBRIUM

CALCULATIONS

When calculating phase equilibria at low or intermediate densities, it
may be important to use a molecular-thermodynamic model which not only
rcduces to the correct ideal-gas limit but also yields the correct second virial

cocfficient.

For mixture calculations, the important thermodynamic property is not
the absolute value of the second virial coefficient but its derivative with
respect to componcnt mole pumbcr. This derivative, which is closely related to
the cross-second virial coefficient, determines the fugacity coefficient at low
densities. Statistical mechanics requires that the mixing rules for equation-
of-state paramcters must be such that they yield a quadratic mole-fraction
dependence for the second virial coefficient. Molecular-thermodynamic
models  which violate this requircment necessarily give an erroneous
composition dependence for the fugacity coefficient of a component in a
mixture at modest densities. For a heavy component, dilute in a mixture at

modest densities, the fugacity coefficient is often far removed from unity.

Figure 10 shows éalculatcd and experimental (Angus er al, 1976,
Hemmaplardh and King, 1972, Kell and McLaurin, 1969, Kudchadker and
Eubank, 1970, Lazalde-Crabtrece et al., 1980, ) second virial coefficients for the
system carbon dioxide/mcthanol.  The solid lines indicate calculations using

the model proposed here.  Tsonopoulos' correlation gives excellent results to
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very low temperatures. The dashed lines show calculations for the case where
we discard the proposed interpolation between low and high densities, that is,
where F=1 in Equation (2). In that event, the model becomes a conventional
Boublik-Mansoori/van der Waals equation (Dimitrelis and Prausnitz, 1986). We
call this the diminutive form of our model. Using equation-of-state parameters
obtained at high density [with the quadratic mixing rule for adf(Equation
(5a))], we calculate a second virial coefficient which deviatés significantly

from the observed value, particularly at lower temperatures.

Figure 11 shows the importance of using a model which reduces to the
correct second virial coefficient at low densities. Calculated and experimental
(Newitt et al, 1956; Lazalde-Crabtree ez al., 1980) phase equilibria for the

carbon dioxide/methanol system are shown at 263.15 and 273.15 K. We use in

this calculation the quadratic mixing rule for the high-density attractive-

forc_c parameter [Equation (5a)]. For both sets of calculations shown in Figure
11, binary parameter kgf is adjusted from solubility data for carbon dioxide in
the methanol-rich liquid phase; no. vapor-phasc data were used for the
paramcter estimation. The diminutive form of the model underpredicts the
observed vapor-phase solubility of methanol while the proposed model

represents the phase behavior correctly.

Figure 12 shows the effect observed when we use molecular-
thermodynamic terms with physical significance. Calculations and
experimental mcasufcmems (Olds et al., 1942) are presented for vapor-phase
mole fractions for water in methane at 310.93 K over a large pressure range.
We show four calculations: first, we use the diminulive form for our model and
the quadratic mixing rule for the attractive-force parameter [Equation (5a)];

we then obtain an overprediction of the observed vapor-phase solubilities.
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perimental Vapor-Phase Mole Fraction of Water

in Mecthane at 310.93 K (Binary Interaction Parameters Adjusted from K-Factor
Data for Both Components at 680 bar).
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Second, we include the proposed interpolation between the second-virial and
dense-fluid contribution [Equation (2)], while maintaining the simple
quadratic mixing rule for the attractive-force parameter [Equation (5a)].
Using the correct second. virial coefficient improves the correlation for the
vapor-phase mole fraction of water up to 30 bar. When a cubic mixing rule is
used for the dense-fluid attractive-force parameter [Equation (5)], calculations

are in excecllent agreement with observed phase behavior (case 3).

There is no significant deterioration in the calculated results when we
use the diminutive form of the model with the cubic mixing rule [Equation (5)]
(case (4)). For this case, the representation of the phase behavior is good
despite the erroneous cubic-mole-fraction dependence for the second - virial
cocfficient, indicating that in some cases, a theorctically invalid mixing rule
may nevertheless give acceptable results.  To illustrate, Figure 13 presents
cross-sccond virial cocfficents for the methane/water binary as a function of
the methane mole fraction for two temperatures. The experimental value
(Rigby and Prausnitz, 1968, Smith er al., 1983) is independent of mole fraction
as dictated by statistical mechanics. If we use the diminutive model with the
cubic mixing rule [Equation (5)], we obtain at low densities a second virial
coefficient which is cubic in mole fraction; that is, we obtain a cross-second
virial cocfﬁcicm which erroneously is linear in mole fraction. The solid lines

show these calculations.

For the calculated vapor-phase solubility of methane in water, we do not
scc any adverse effect by this inconsistency in the mole-fraction dependence
for the second virial coefficient. The cross-second virial coefficient is
particularly -important for the representation of the methane-rich vapor-

phase properties. As shown in Figure 13, the calculated value for the mole-
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fraction-dependent cross-second virial coefficient matches very well the
experimentally observed value for Bj2 for the methane-rich end of the
concentration range. The largest deviation occurs at the water-rich end of the
concentration range. But the second virial coefficient is not important for
quuid.-phase property correlation. Therefore, the large deviation of the
calculated cross-second virial cocfficient from experiment at the liquid end of
the concentration range is masked in some vapor-liquid-equilibrium

calculations.

However, the effect of an erroneous mole-fraction dependence of the
second virial coefficient can be seen in the correlation of low-pressure caloric
propertics.  Figure 14 shows calculated and experimental (Smith and Wormald,
1984) excess enthalpies for an equimolar n-octane/water mixture at 1.013 bar
as a function of tempcrature. Binary dense-fluid parameters k:C,H,s,H,O and
k?liO.n-C.H,. have been obtained from high-pressure, liquid-liquid equilibrium
data. Using the diminutive model, the calculated results show significant
deviations from experiment.  The calculations for the proposed model are in
closer agreement with cxperiment. These calculations were performed for an
equimolar mixture.  Figure 13 shows that erroneous mole-fraction dependence
for the cross-second v>irial cocfficient gives, for an equimolar mixture,

significant deviation from the experimentally observed value for Bja.

CONCLUSIONS

A molccular-thermodynamic framework is presented to correlate
thermodynamic propertics of fluids and fluid mixtures at low and high
densities. The essential feature of this framework is a separation of the

Helmholtz energy into low- and high-density contributions.  This separation
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allows accurate representation of second virial coefficicms as well as high-
pressure phase equilibria because it permits the use of independent mixing
rules for dense-fluid equation-of-state parameters while simu]ianeously
obeying the quadratic mole-fraction dependence for the second virial
coefficient. We illustrate the proposed framework using the B.oublik-Mansoori
equation for the reference system and a simple van der Waals attractive term

for the perturbation.

We discuss the physical significance of the second virial coefficient in
correlating low-pressure phase equilibria. Erroneous mole-fraction
dependence for the second virial coefficient does not necessarily produce
inferior physical-property correlation; its adverse effect is often - masked by

the flexibility in numerical adjustment of model parameters.
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NOTATION

a van-der-Waals Attractive-Force Parameter
a Molar Helmholtz Energy

b van-der-Waals Covolume

B Sccond Virial Coefficient
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D, E,F Parameters for the Boublik-Mansoori

F Interpolation Function

k Binary Intecraction Parameter
m Number of Components

P Pressure

R Gas Constant

T 'Tcmperature

v Molar Volume

X Mole Fraction

Greek Lettérs:

o4 Pure-Component Sccond-Virial-Coefficient
B Pure-Component Second-Virial-Coefficient
14 Reduced Molar Density

p Molar Density

T Closed-Packed Reduced Density
) Acentric Factor
Superscripts:

df Dense Fluid

per Pcrfurbation

r Residual

rcf Reference

sV Second Virial

Subscripts:

c Critical

Property of Component i

Expression

Parameter

Parameter
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ij Interaction between Components i and j

i,j Interaction of Component i Infinitely Diluted in Component j.
L Liquid
r Reduced

APPENDIX I: Boublik-Mansoori Expression for the Molar Residual Helmholtz

Energy for a Mixture of Hard Spheres.

Boublik (1970) and Mansoori et al. (1971), working independently and
following somewhat different phenomenological arguments based,
respectively, on scaled-particle theory and on Percus-Yevick theory, derived
the following expression for the molar residual Helmholtz energy of a mixture

of hard spheres:

3 3
3DE§_ E E
ref ™ D)
F 2 2 3
¢ - F o F E 1]10gl1-¢) ‘ (I.1)
RT 1-§ (1-&)2 F2

Reduced molar density & is given by Equation (13). Parameters D, E and F are

given by:

m 1/3

D=3 xibi . (1.2)
i=1
m 2/3

E=3 xib; (1.3)
i=]

F=3 xibi (1.4)

"
—

Van der Waals covolume parameter b; is given by Equation (17).
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Advantages of the Boublik-Mansoori expression versus other
commonly-used reference systems are discussed elsewhere (Dimitrelis and

Prausnitz, 1986).

APPENDIX II: Second-Virial-Coefficient Correlation

For the sccond virial coefficient Bj;, we use the correlation developed by

Tsonopoulos (1974):

sV

B‘,_Bf.d BP‘"— Vooajj l
ij=DBij + Djj —b'.l - RT (II )
where
by =SLci (0.1445 +0.0637 ;) 1L2)
c.ij
and
2 2
a;vzm 033+ 0.1385-0.331 wj . 0.0121 + 0.423 w; .

. T, :; 2
(81} 1 Tr,ij

. 0.000607 + 0.008

7
Tr.ij
2 2 : 2 2
. R T.i{ Bi ai | RTe[ B @j
P s P i (11.3)
ol Tr.i Tr.i “ Tr.j Tr,j )
Reduced temperatures are defined as
T
Tri=— (11.4)
[N}
T
Trij= (11.5)

VTeiTe; (1-ky )



sV
Table II.1: Binary second-virial-coefficient parameter kijj .

sV

Binary Mixture kij T,K Reference

CO9/H70 0.15 - 298-373 Smith and Wormald
(1984)

C3Hg/H20 0.38 Tsonopoulos (1979)

n-C4H10/H20 0.45 Tsonopoulos (1979)

CeHg/H20 0.5 Tsonopoulos (1979)

C2HsOH/H20 0

CH3CHOHCH3#/H,0 0

CH3CHOHC,Hs/H20 0

CH30CH¥/H,0 0

CO2/CH30H 0.01 Tsonopoulos (1979)

COy/C2H50H 0.07 Tsonopoulos (1979)

CO2/CH3CHOHCH3 0.07 Tsonopoulos (1979)

CH4/CH30H 0.13 . 288-233 Dymond and Smith
(1980)

C3Hg/CH30H ©0.16 Tsonopoulos (1979)

n-CeH14/CH30H 0.31 398-448 Zawiswa (1985)

C3Hg/C2HsOH 0.2 Tsonopoulos (1979)

n-C¢H14/C2HsOH 0.3 ‘

CsHe/C2HsOH 0.20 333-373 Dymond and Smith
(1980)

sV
where binary parameter ki is adjusted from experimental information on

second virial cocfficients for mixtures. Tsonopoulos (1979) presents

sV
corrclations and values for a variety of binary ‘mixtures. Table II.1 gives ki

values for binary mixtures investigated in this work.

Acentric factor o for the ij-pair is given by the arithmetic-mean rule:

i (11.6)
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Table II1.2: Pure-component second-virial-coefficient parameters o and Bj.

Component o Bi T,K Reference

H,0 -0.01921  -0.002444 293-673 Dymond and Smith(1980)
CH3;0CH3 0.1206 0.06368 273-373 Dymond and Smith (1980)
CH30H -0.06143  -0.04595 298-523 Dymond and Smith (1980)
C,HsOH 0.1226 0.07141 313-393 Dymond and Smith (1980)

CH3CHOHCH3  0.050S5 0.03832 333-473 Dymond and Smith (1980)
CH3CHOHC;Hs 0.03869 0.02411 378-423 Dymond and Smith (1980)

Finally, the critical pressure for the ij-pair is defined using the
corresponding-states relation

Pcivei Pcivcj
4 ciVYei + [ AN
Tc.i TcJ

1/3 1/73 3
(ch +VcJ

Pcij=Tej

(1.7)

- where v is the molar critical volume.

Pure-component parameters a; and B; [Equation (I1.3)] account for
hydrogcn-bonding and dipdlar interactions between molecules. They are
obtained from expcrimental sccond virial coefficients. The last term in
Equation (II.3) contributes only when both components i and j are polar;
otherwise, this term is zero. Table I1.2 gives values for o; and Bi for the polar

compounds investigated in this work.
APPENDIX lII: Hclmhollz-Encrgy Correction to Account for Difference in van
der Waals Covolume betwecen Low and High Densities.

The value for the van der Waals covolume parameter differs depending

upon the density-range of the data used for its estimation. High-density data
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(e.g., dense-fluid, critical or supercritical densitics) yield a lower value than

sccond-virial-coefficient data (Prausnitz, 1985).

To circumvent this problem, we fix the covolume parameter at high
densities, while adding a small correction to the Helmholtz energy [Equation
(1D} to account for the different value in the low-density regime:

r,corr

sV df
a =p(b -b )(1-F)

m m v '
=p(X, X xixjbj - = (F+3DE)) (1-F) (IL1)
i=1j=1
Equation (I1.2) gives bisjv. Parameters D, E and F are given by Equations (I.2),
(.3) and (1.4) respectively. Interpolation function ¥  forces the correction

function to zero at intermediatc and high densities.

APPENDIX IV: Effect of Purc-Component Parameters on the Correlation of

Binary Phasc Equilibria near a Component's Critical Point.

Classical equations of state cannot model phase behavior in the near-
critical region (sce e.g. Chapela and Rowlinson, 1974). If cquatiori-of—statc
paramecters are obtained from fitting vapor-pressure and liquid-density data,
the predicted critical temperature and pressure are too high. This is not
important for most phase-equilibrium calculations. However, for fluid-phase
cquilibria near a component’s critical point, overprediction of the critical
temperaturc by a few degrees causes significant errors in the calculation of

properties for the necar-critical fluid phase.

Figurc IV-1 shows the calculated and experimental (Angus er al., 1976)

two-phasc region for carbon dioxide. Using .paramecters obtained from data
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reduction far from the critical region, the model overpredicts the critical
point.  Thus, separation of the Helmholtz energy into low-density and high-
density contributions [Equation (2)] does not improve property correlation

near critical points.

To dcmonsfrate the negative effect of ovcrprédiction. we present near-
critical calculations for the ethylene/naphthalene system. Figure IV-2 shows
calculated and experimental (Eckert et al.,, 1986) infinite-dilution partial molar
volumes for naphthalene in ethylene at 298.15 K. The critical point of

ethylene is 282.4 K and 50.4 bar.

Using ethylenc parameters obtained far from its critical region, the
model (dashed curve) behaves as if, at 298.15, it is significantly closer to the
critical point than it should be. Thercfore, the partial molar volume exhibits a
significantly larger divergence than experimentally observed (There is a

singularity in the partial molar volume at the critical point).

We can empirically circumvent this problem by adjusting the equation-
of-state parameters for the ncar-critical component. To determine these
paramcters, we give higher weight to pure-component vapor-pressure data in
the ncar-critical region and we require the calculated critical isotherm to go
through the critical point at the expecrimentally observed critical pressure and
temperature.  The calculation of the critical volume and the liquid volume are
then in significant error (of the order of 20%). However, these shortcomings
do not affect correlation of mixture-derivative properties such as partial molar
properties. The solid line in Figure IV-2 shows calculated results using

parameters as described above. The correlation of the experimentally

43



44

A S1°86T 18 duwdlAyig eonudsadng ui anpg ApPnuyup sudsjeyiydeN Jo swnjop JBION [enied "Z-A] dundiy

ioq ‘ainssaiy

0G¢e 00¢ OGlI 0]0]! 0G 0

T T T T OI-
©-
_ o

u0ibas |0211sd “
94| Ul DIOP 3INSSAIA-40dDA WOIy PIJ41) L=

JudAyjo 10) S43}3woI0d u3u0dwod - ving ﬁ_

u01bas 10214143 ayy woi) Aomp pynp

Ay1sudp-pinby pup 34n$531d-10dDA WOy Payyy _ 19-
3ud|hy}a 104 Si13jowDI0d UGUOdWOd - Ny — — _ ‘

UO1}33420) |DINA - pUOIAS 1M UOI|DNDY _
m_cﬂs&c:o;x_..oo?c.z-.._.a:cce.:cc..u: ?.:o_:u_cu _

{(OuG1) 10,0 yioy2] W _
jBjudwiIedu § _

2UNI0A 4DON ID1}IDG UON|IG B41ulju)

Eg
~

1

" 1
r

£

(QV]
[}
oW

s
i




0y (1) ) (N .
Table IV.l1: Pure-component parameters ai ,ai ,bi and b; adjusted from

vapor-pressure data in the near-critical region.

(0) (1 0 (1)

Component aj aj bi bi : Reference
C3Hg 0.7185 0.5079 0.2314 0.3188 Goodwin and
. Haynes (1982)
n-CaHio 0.7119 0.4971 0.2204 0.2602 Haynes and
: ' Goodwin (1982)
CH30CH3 0.7767 0.8985 0.2464 0.7505 Boublik et al.
(1984)
(60, 0.9235 0.9474 0.2840 0.6295 Angus er al.
(1976)
observed behavior is now much better. Table IV.1 gives adjusted pure-

component parameters for fluids of interest here.

APPENDIX V: Phase-Equilibrium  Correlation for Strongly-Associating

Mixtures such as Alcohol/Hydrocarbon.

Mixtures of molecules which exhibit strong hydrogen-bonding or
association forces are characterized by the presence of large liquid-liquid
immiscibility regions. When these regions are near vapor-liquid two-phase
regimes in the pressure-temperature phase space, as is the case for
hydrocarbon/alcohal mixtures, correlation of fluid-phase behavior s

particularly difficult.

Figurec V-1 shows the pressure/temperature diagram for the
propane/methanol system. It exhibits a large liquid-liquid immiscibility gap
extending from a few bars above the vapor pressure for propane up to very

high pressures.



00 T T
| Obtained from dota by
| Rodosz (1980)
I Goodwin and Haynes (1982)
Brunner (1985) Pt
l Kuenen (1S903) / N\ "
Criticol
80+ , / ] Point —
| /
l /
| -/
1 /
s 60F | / -
'Q. LLE | /e
) | /
a | /
@ | /
— Critical
a 40 l F’rointco —
|
|
! Propane
20 _
’ Mettano!
O ? | |
250 350 450 550

Temperature, K

Figure V-.1. Pressure-Temperature Diagram for Propane/Methanol.

46



47

“(vuqipinby _::_:,_-_::3\._
PIpa1g Ajsnosuosiz suonenoje)) joueyRW/ouedory 105 euqiinbyg OSeUd  ewdwiadyy pue pajegnoe) "TA iy

aundoud u01}aDa4 BjOp

Ol 80 90 b0 2o O Ol 80 90 ro0 20 OO
T I I i i

| T T
10dOoA \'\M
1040
£ 0Z 4
~
O [¢V)
(7))
v
pinbi ) b} ﬂJ
(4]
0¢ o
O
=
pinbi)
0
u Ov
(&) 0 I.c'.A..E::E uu.C.l..;.,_.....:_.u T o T
Aitsuop ylay 405 9gna bure
M Dot w013daa0) Diaia fra
MM SHUDAM aaf _.Z;\..::.s:__vd L EFL? LLIPTY Qe (Juyul) 7040 L EETELY B EI RIS .C>._.:\D
e o) [LLF LI ISYRRTTYS 1Y ]
1 1 1 i — r 1 l 1 | Om
Y Ll



When equations of state are used to correlate isobaric liquid-liquid
equilibria they tend to overpredict dramatically the upper solution
temperature.  As a result, the liquid-liquid critical locus penetrates the vapor-
liquid two-phase region leading to erroneous three-phase predictions. Figure
V-2 shows such an example, again for the propane/methanol system. The
model predicts at 20 bar and 343 K a liquid-liquid equilibrium while the
observed upper solution temperature for this pressure is at approximately
290 K. The effect of the overprediction of the liquid-liquid critical locus can

be still seen in the calculations for the 373-K isotherm.

Recently, de Pablo and Prausnitz (1988) proposed a semi-theoretical
correction to the excess Gibbs energy to correct for such a deficiency in
liquid-liquid-cquilibrium calculations. Incorporation of a similar correction
within an ecquation-of-state framework may be advantageous for simultaneous

correlation of liquid-liquid and vapor-liquid equilibria.
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